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Practice CS103 Final Exam II

We strongly recommend that you work through this exam under realistic conditions rather
than just flipping through the problems and seeing what they look like. Setting aside three
hours in a quiet space with your notes and making a good honest effort to solve all the prob-
lems is one of the single best things you can do to prepare for this exam. It will give you prac-
tice working under time pressure and give you an honest sense of where you stand and what
you need to get some more practice with.

This practice final exam is essentially the final exam from Fall 2015, with a few minor modifica-
tions (some of the problems we asked here got converted to problem set questions, so we re-
placed them with other exam questions) and others covered topics that have since be dropped
from CS103 (namely, using self-reference to prove unrecognizability). 

The exam is closed-book, closed-computer, limited note (one double-sided sheet of 8.5” × 11”
paper decorated however you'd like).

You have three hours to complete this exam. There are 50 total points.

Question Points Graders

(1) Set Theory / 8

(2) Logic and Relations / 6

(3) Graph Theory / 12

(4) Induction and Cardinality / 6

(5) Regular and Context-Free Languages / 12

(6) R and RE Languages  / 6



2 / 16

Problem One: Set Theory      (5 Points)
(CS103 Midterm, Spring 2015)

Recall that if S and T are sets, the difference of S and T, denoted S – T, is defined as the set of all
elements that are in S but not in T.

i. (5 Points) Are there any sets A and B such that (℘ A – B) = (℘ A) – (℘ B)? If so, give an
example of sets A and B with these properties. If not, prove why not.
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ii. (3 Points) Let A and B be arbitrary sets and consider the set S defined below:

S = { x | ¬(x  ∈ A → x  ∈ B) }

Write an expression for S in terms of A and B using the standard set operators (union, in-
tersection, etc.), but without using set-builder notation. Briefly justify why your answer is
correct.
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Problem Two: Logic and Relations    (6 Points)
Suppose that you want to prove the implication P → Q. Here are two possible routes you can
take:

• Prove the implication by contradiction.

• Take the contrapositive of the implication, then prove the contrapositive by contradiction.

It turns out that these two proof approaches are completely equivalent to one another.

i. (2 Points) State, in propositional logic, which statements you will end up assuming if you
were to use each of the above proof approaches, then briefly explain why they're equiva-
lent.
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ii. (4 Points) Below is a drawing of a binary relation R over a set of people A:

For each of the following first-order logic statements about R, decide whether that state-
ment is true or false. No justification is required, and there is no penalty for an incorrect
guess.

1. ∀p  ∈ A. ∃q  ∈ A. pRq

 True☐  False ☐

2. ∃p  ∈ A. ∀q  ∈ A. pRq

 True☐  False ☐

3. ∃p  ∈ A. (pRp → ∀q  ∈ A. qRq)

 True☐  False☐

4. ¬∀p  ∈ A. ∀q  ∈ A. (p ≠ q → ∃r  ∈ A. (pRr  ∧ qRr))

 True☐  False☐
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Problem Three: Graph Theory   (12 Points)
On Problem Set Four, you worked with graphs and played around with some of their properties.
This question explores a new class of graphs and is designed to give you a chance to show us
what you’ve learned along the way.

Let’s begin with a definition. An undirected graph G = (V,  E) is called a friendship graph if it
satisfies the following requirement:

For any nodes u, v  ∈ V where u ≠ v, 

there is exactly one node z  ∈ V where {u, z}  ∈ E and {v, z}  ∈ E.

As a reminder, undirected graphs cannot have edges from nodes back to themselves.

i. (4 Points) Prove that if G = (V, E) is a friendship graph, then G does not contain any sim-
ple cycles of length four.

As a hint, draw pictures.
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(Extra space for your answer to Problem Three, Part (i), if you need it.)
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As a refresher from the previous page, an undirected graph  G = (V,  E) is called a  friendship
graph if it satisfies the following requirement:

For any nodes u, v  ∈ V where u ≠ v, 

there is exactly one node z  ∈ V where {u, z}  ∈ E and {v, z}  ∈ E.

As a reminder, undirected graphs cannot have edges from nodes back to themselves.

ii. (5 Points) Let G = (V, E) be a friendship graph with at least two nodes. Prove that for ev-
ery node v  ∈ V, there’s a simple cycle of length three that contains v.

As a hint, draw pictures.
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(Extra space for your answer to Problem Three, Part (ii), if you need it.)
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As a refresher, an undirected graph G = (V, E) is called a friendship graph if it satisfies the fol-
lowing requirement:

For any nodes u, v  ∈ V where u ≠ v, 

there is exactly one node z  ∈ V where {u, z}  ∈ E and {v, z}  ∈ E.

As a reminder, undirected graphs cannot have edges from nodes back to themselves.

iii. (3 Points) In the space below, draw a friendship graph with exactly seven nodes. No jus-
tification is necessary. 

As a hint, use the results you proved in parts (i) and (ii) to guide your search.

We will grade whatever you draw in this box.
Feel free to use the space on the next page for scratch work.
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Problem Four: Induction and Cardinality       (6 Points)
Consider the following series:

–1 + 2 – 3 + 4 – 5 + 6 – 7 + 8 – 9 + 10 – 11 + 12 – 13 + 14 – 15 …

We can think about evaluating larger and larger number of terms in the summation. For example,
the sum of the first five terms is –1 + 2 – 3 + 4 – 5 = -3, and the sum of the first eight terms
works out to –1 + 2 – 3 + 4 – 5 + 6 – 7 + 8 = 4. For notational simplicity, let's define An to be the
sum of the first n terms in the summation. For example, A0 is the sum of the first zero terms in
the summation (that's the empty sum, which is zero). A  is the sum of the first term (-1), ₁ A  is the₂
sum of the first two terms (-1 + 2 = 1), A3 is the sum of the first three terms (-1 + 2 – 3 = -2), etc.

The following is a piecewise function that is a bijection f :  → :ℕ ℤ

f (n)={
n
2

if n  is even

−
n+1

2
otherwise

(You do not have to prove that f(n) is a bijection.) It turns out that this function is closely con-
nected to the above series. Specifically, for every natural number n, the following is true:

An = f(n)

In other words, you can form a bijection from  to  by considering longer and longer alternatℕ ℤ -
ing sums of the natural numbers. Weird, isn't it?

Prove by induction on n that if n  ∈ ℕ, then An = f(n).
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(Extra space for your answer to Problem Four, if you need it.)
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Problem Five: Regular and Context-Free Languages      (12 Points)
Let Σ = {a, b} and consider the following languages L  and ₁ L  over Σ:₂

L  = { ₁ w  Σ*   |   ∈ w doesn't contain bb as a substring }

L  = { ₂ w  Σ*   |   |∈ w| ≥ 3 and the third-to-last character of w is an a }

This problem concerns the language L  ∩ ₁ L . As an example, the strings ₂ aaa, baaba, and bababa
are all in L  ∩ ₁ L , and the strings ε, ₂ ba, abb, bbaab, and bab are all not in L  ∩ ₁ L .₂

i. (3 Points) Design an NFA for L  ∩ ₁ L . No justification is necessary.₂

ii. (3 Points) Write a regular expression for L  ∩ ₁ L . No justification is necessary.₂
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The “canonical” example of a nonregular language is the language L  = { ₃ anbn | n  ∈ ℕ }. It turns
out that, not only is this language not regular, but most of its subsets aren’t regular either.

iii. (3 Points) Prove that if L ⊆ L  and ₃ L contains infinitely many strings, then L is not regu-
lar.
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In Problem Set Six, you designed a CFG for the following language:

ADD = { 1m+1n 1≟ m+n | m, n  ∈ ℕ }

Now, consider the following language over the alphabet {1, +, ≈}, which is a variation on ADD:

NEAR = { 1m+1n≈1p | m, n, p  ∈ ℕ and m + n = p + 1 }

Intuitively, NEAR is the set of all arithmetic expressions where the left-hand side is exactly one
greater than the right-hand side. For example:

111+1≈111  ∈ NEAR

11+111≈1111  NEAR∈

1+≈  ∈ NEAR

+1≈  ∈ NEAR

+≈  ∉ NEAR

1+1≈11  ∉ NEAR

1+1≈111  ∉ NEAR

1+1+1≈11  ∉ NEAR

This language turns out to be context-free.

iv. (3 Points) Write a CFG for NEAR.
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Problem Six: R and RE Languages

(6 Points) Below is a Venn diagram showing the overlap of different classes of languages we've
studied so far. We have also provided you a list of numbered languages. For each of those lan-
guages, draw where in the Venn diagram that language belongs. As an example, we've indicated
where Language 1 and Language 2 should go. No proofs or justifications are necessary, and there
is no penalty for an incorrect guess.

1. Σ*

2. LD

3. {  w  {∈ a,  b}* | |w| ≥ 100 and the first 50 characters of  w are the same as the last 50
                            characters of w }

4. { ⟨M , ₁ M , ₂ M₃⟩ | M , ₁ M , and ₂ M  are TMs over the same alphabet Σ and every string in₃
Σ*
                           belongs to exactly one of (ℒ M ), ₁ ℒ(M ), or ₂ ℒ(M ) }₃

5. HALT – ATM

6. ATM – HALT

7. { ⟨V, w  | ⟩ V is a TM and there is a string c such that V accepts ⟨w, c  } ⟩

8. { w  {∈ r, d}* | w has more r's than d's }


